CSC363H5 Tutorial 3
I’'m back!!!l yay

Paul “sushi_enjoyer” Zhang

University of Chungi

January 27, 2021

1/26

Learning objectives this tutorial

By the end of this tutorial, you should...

» Be fully convinced that Turing computability is much easier to
understand than G*del computability.

» Have a list of synonyms for “computable” and “partial computable”.

» Have a complete, mathematically-rigorous proof of the very intuitive
fact that you can label things with numbers.

» Convince yourself to never take MAT309. To scare you even more,
here's a proof | wrote in that course (page 1/3):

2/26

Quiz 2 is administered in this tutorial.!

Question 1 (1 point): Do you hate Turing machines?

Question 2 (1 point): Do you like partial recursive functions?

Question 3 (1 point): Have you finished Assignment 17

Ino it isn't, but stay tuned!
3/26

Answer key

Question 1 (1 point): Do you hate Turing machines?
Answer: yep, i hate Turing machines! ®

Question 2 (1 point): Do you like partial recursive functions?

Answer: yes! they are so much better than Boring machines. ©

Question 3 (1 point): Have you finished Assignment 17
Answer: yes! i love doing csc363 homework @

4/26

let's review some words!

Task: List all synonyms of computable you have encountered so far in this
course.

Task: List all synonyms of partial computable you have encountered so
far in this course.

ANDTHEY mmmmmﬁ

Y‘AHII 'I'IIEV Illl JI |STOP COMING AND THEY DONT
__STIII' I}IIMI E-ANII 'I'HEY IIIIN"I' STORCOMING

5/26

let’s review some words!

Task: List all synonyms of computable you have encountered so far in this
course.

Answer: decidable, nice, not weird, won't take forever to decide whether
something is in it or not

Task: List all synonyms of partial computable you have encountered so
far in this course.

Answer: listable, computably enumerable (c.e.), partial recursive,
Diophantine, the reason why we are spending weeks on material you'll
probably never see in a software job

Note: primitive recursive is neither of those.
6/26

the reason why you’re here today...

is to prove this one statement!

If A C N is an infinite computable set, then there exists an
injective computable function f : N — N such that A is the range
of f.

- professor helo_fish. jpg, probably, 2021

Oh wait, helo_fish. jpg is back! she is no longer sad and feeling quite
flushed right now.

7/26

helo fish flushed. jpg

mmm... idk, happy early valentines day i guess? ;-;
(btw, sowwy i couldn’t hold tutorial last week!)

helo_fish flushed. jpg wants to grant you one wish. Of course your
wish is to know what an infinite computable set is! Say
“helo_fish flushed. jpg, what is an infinite computable set?”

8/26

helo fish flushed. jpg

An infinite computable
sef is a set fhaf is
infinite and computable.

bruh.

Okay, now helo_fish flushed.jpg can go since she has granted your
wish. Say goodbye to helo_fish _flushed. jpg!

9/26

Okay question time.

In fact, we only need partial computability:

If A C N is an infinite eemputable partial computable set, then there exists
an injective computable function f : N — N such that A is the range of f.

Task: Prove this. (5 mins)

10/26

Okay question time.

In fact, we only need partial computability:

If A C N is an infinite eemputable partial computable set, then there exists
an injective computable function f : N — N such that A is the range of f.

I'll lead you through the proof instead, because again, Greek letters spook
people.
Task: Read and understand the statement to keep in your head (1-2 min).

11/26

Okay question time.

Recall: if A C N is partial computable, then there exists a computable

function f : N — N such that A is the range of . (but f might not be
injective!)

In other words,
A={f(0),f(1),7(2),...}
(but there may be repeats in the above list, as f might not be injective!)

Our task is to find an injective function h : N — N such that

A = {h(0), h(1), h(2),.. .}

(the above list can't have repeats!)

12/26

How do we remove repeats intuitively?

Say A is the set of odd numbers, and f was some weird function that
wanted to enumerate all the odd numbers, but really likes the number 69.

A=1{69,1,69,3,69,5,69,7,...} = {£(0), f(1), f(2), f(3),...}

Task: How would you make an injective function h that generates the
same set, but without repeats? (Don't need you to be formal here, just
describe what to do)

13/26

How do we remove repeats intuitively?

Task: How would you make an injective function h that generates the

same set, but without repeats? (Don't need you to be formal here, just
describe what to do)

Answer: Choose h(n) to be the nth? element that hasn't been listed yet.
A={69,1,69,3,69,5,69,7,...} = {f(0),f(1),f(2),7(3),...}

In this case, h(0) =69, h(1) =1, h(2) =3, h(3) =5, and so on.

Now we just have to formalize the definition of h.

2Technically A is a set and doesn’t have an “nth element” since sets don't have an
order. But we can order A like f(0), f(1),...

14/26

How do we remove repeats intuitively?

A={69,1,69,3,69,5,69,7,...} = {f(0),f(1),1(2),7(3),...}
In this case, h(0) =69, h(1) =1, h(2) =3, h(3) =5, and so on.

So to construct such an h, we have

h(n+ 1) = f(k),

where k is the minimal integer such that f(k) ¢ {h(0), h(1),..., h(n)}.
Task: Make sense of why the above works by trying to apply it on the
example | gave.

15/26

Some building blocks first!

Suppose we have defined h(0), h(1),..., h(n) already, and we want to
define h(n+1). For n € N, Let

S = {h(m) : m < n} = {h(0), h(1), ..., h(n)}.

Task: Why is S, a computable set for any n € N?

16 /26

Some building blocks first!

Suppose we have defined h(0), h(1),..., h(n) already, and we want to
define h(n+1). For n € N, Let

Sp={h(m) : m < n} = {h(0), h(1),...,h(n)}.

Task: Why is S, a computable set for any n € N?
Answer: S, is finite for any n, and finite sets are always computable
(according to professor Chungus).

17/26

Some building blocks first!

Suppose we have defined h(0), h(1),..., h(n) already, and we want to
define h(n+1). For n € N, Let

S = {h(m) : m < n} = {h(0), h(1), ..., h(n)}.

Task: Why is the following function g : N x N — N computable? (Give a
Turing machine argument)

0 f(k) &S

g(n. k) = {1 F(k) € S,

18/26

Some building blocks first!

Suppose we have defined h(0), h(1),..., h(n) already, and we want to
define h(n+1). For n € N, Let

Sp={h(m): m< n} ={h(0),h(1),...,h(n)}.

Task: Why is the following function g : N x N — N computable? (Give a
Turing machine argument)

Answer: Just check if f(k) = f(0) or f(k) = f(1) or f(k) = f(2), until
f(k) = f(n).

19/26

| hope you remember how to pronounce this Greek
letter!

Task: Pronounce the following Greek letter: p

Task: What does uy[g(X,y) = 0] represent? (I've forgotten too, dw)

20/26

| hope you remember how to pronounce this Greek
letter!

Task: Pronounce the following Greek letter: p
Answer:

(i only remember p's from love live school idol project lol)
(and no, i don't really like this anime)

Task: What does py[g(X,y) = 0] represent? (I've forgotten too, dw)
Answer: py[g(x,y) = 0] is the minimum y € N such that g(x,y) = 0.
(This minimum might not exist! in which case this is left undefined)

21/26

| hope you remember how to pronounce this Greek

letter!

Recall:

Sp={h(m): m < n} ={h(0),h(1),...,h(n)}

(0 f(K) ¢S,
g(”’k)_{1 F(k) € Sp.

Task: (in words) What is pk[g(n, k) = 0]?

22/26

| hope you remember how to pronounce this Greek
letter!

Recall:
Sp={h(m): m < n} ={h(0),h(1),...,h(n)}

{0 f(K) ¢S,
g(”’k){1 F(K) € Sn.

Task: (in words) What is pk[g(n, k) = 0]?
Answer: pk([g(n, k) = 0] is the first k € N such that f(k) ¢ S,,.

But remember, we wanted to set h(n+ 1) = f(k) where k is the first
integer with f(k) ¢ S,! So we can let

h(n+1) = F(uk[g(n, k) = 0]).

23/26

We can formalize this now.

We have:
h(0) = £(0)

h(n+1) = F(uklg(n. k) = O)).
Recall: if f; and f, are partial recursive, and
F(x,0) = fi(x)

F(x,s(n)) = fa(x, n, F(x, n))

then F is partial recursive.

24 /26

We can formalize this now.

We have:
h(0) = £(0)

h(n+1) = f(uk[g(n, k) = 0]).

So if we let fi(x) = f(0) (it maps to the constant £(0)), and
fo(x, n, F(x, n)) = f(uk[g(n, k) = 0]), then F defined by

F(x,0) = fi(x) = f(0)

F(x,s(n)) = fa(x, n, F(x, n)) = f(uklg(n, k) = 0])

then F is partial recursive.
One last thing: set h(n) = F(0, n) (and notice that F doesn't actually use
x! it's absolutely useless.)

Task: Make sense of this.

25/26

yay we proved it! now what?

nothing. idk that's the only question i had to cover this tut, so &
here's croissant sushi. bye! QT

r P | |

26 /26

