
CSC363H5 Tutorial 3
I’m back!!! yay

Paul “sushi enjoyer” Zhang

University of Chungi

January 27, 2021

1 / 26



Learning objectives this tutorial
By the end of this tutorial, you should...
I Be fully convinced that Turing computability is much easier to

understand than G*del computability.
I Have a list of synonyms for “computable” and “partial computable”.
I Have a complete, mathematically-rigorous proof of the very intuitive

fact that you can label things with numbers.
I Convince yourself to never take MAT309. To scare you even more,

here’s a proof I wrote in that course (page 1/3):

2 / 26



Quiz 2 is administered in this tutorial.1

Question 1 (1 point): Do you hate Turing machines?

Question 2 (1 point): Do you like partial recursive functions?

Question 3 (1 point): Have you finished Assignment 1?

1no it isn’t, but stay tuned!
3 / 26



Answer key

Question 1 (1 point): Do you hate Turing machines?
Answer: yep, i hate Turing machines!

Question 2 (1 point): Do you like partial recursive functions?
Answer: yes! they are so much better than Boring machines.

Question 3 (1 point): Have you finished Assignment 1?
Answer: yes! i love doing csc363 homework

4 / 26



let’s review some words!
Task: List all synonyms of computable you have encountered so far in this
course.
Task: List all synonyms of partial computable you have encountered so
far in this course.

5 / 26



let’s review some words!
Task: List all synonyms of computable you have encountered so far in this
course.
Answer: decidable, nice, not weird, won’t take forever to decide whether
something is in it or not

Task: List all synonyms of partial computable you have encountered so
far in this course.
Answer: listable, computably enumerable (c.e.), partial recursive,
Diophantine, the reason why we are spending weeks on material you’ll
probably never see in a software job

Note: primitive recursive is neither of those.
6 / 26



the reason why you’re here today...

is to prove this one statement!

If A ⊆ N is an infinite computable set, then there exists an
injective computable function f : N→ N such that A is the range
of f .

- professor helo fish.jpg, probably, 2021

Oh wait, helo fish.jpg is back! she is no longer sad and feeling quite
flushed right now.

7 / 26



helo fish flushed.jpg

mmm... idk, happy early valentines day i guess? ;-;
(btw, sowwy i couldn’t hold tutorial last week!)

helo fish flushed.jpg wants to grant you one wish. Of course your
wish is to know what an infinite computable set is! Say
“helo fish flushed.jpg, what is an infinite computable set?”

8 / 26



helo fish flushed.jpg

bruh.

Okay, now helo fish flushed.jpg can go since she has granted your
wish. Say goodbye to helo fish flushed.jpg!

9 / 26



Okay question time.

In fact, we only need partial computability:

If A ⊆ N is an infinite computable partial computable set, then there exists
an injective computable function f : N→ N such that A is the range of f .

Task: Prove this. (5 mins)

10 / 26



Okay question time.

In fact, we only need partial computability:

If A ⊆ N is an infinite computable partial computable set, then there exists
an injective computable function f : N→ N such that A is the range of f .

Task: Prove this. (5 mins)
I’ll lead you through the proof instead, because again, Greek letters spook
people.
Task: Read and understand the statement to keep in your head (1-2 min).

11 / 26



Okay question time.

Recall: if A ⊆ N is partial computable, then there exists a computable
function f : N→ N such that A is the range of f . (but f might not be
injective!)

In other words,
A = {f (0), f (1), f (2), . . .}

(but there may be repeats in the above list, as f might not be injective!)

Our task is to find an injective function h : N→ N such that

A = {h(0), h(1), h(2), . . .}

(the above list can’t have repeats!)

12 / 26



How do we remove repeats intuitively?

Say A is the set of odd numbers, and f was some weird function that
wanted to enumerate all the odd numbers, but really likes the number 69.

A = {69, 1, 69, 3, 69, 5, 69, 7, . . .} = {f (0), f (1), f (2), f (3), . . .}

Task: How would you make an injective function h that generates the
same set, but without repeats? (Don’t need you to be formal here, just
describe what to do)

13 / 26



How do we remove repeats intuitively?

Task: How would you make an injective function h that generates the
same set, but without repeats? (Don’t need you to be formal here, just
describe what to do)

Answer: Choose h(n) to be the nth2 element that hasn’t been listed yet.

A = {69, 1, 69, 3, 69, 5, 69, 7, . . .} = {f (0), f (1), f (2), f (3), . . .}

In this case, h(0) = 69, h(1) = 1, h(2) = 3, h(3) = 5, and so on.

Now we just have to formalize the definition of h.

2Technically A is a set and doesn’t have an “nth element” since sets don’t have an
order. But we can order A like f (0), f (1), . . .

14 / 26



How do we remove repeats intuitively?

A = {69, 1, 69, 3, 69, 5, 69, 7, . . .} = {f (0), f (1), f (2), f (3), . . .}

In this case, h(0) = 69, h(1) = 1, h(2) = 3, h(3) = 5, and so on.

So to construct such an h, we have

h(0) = f (0)

h(n + 1) = f (k),

where k is the minimal integer such that f (k) /∈ {h(0), h(1), . . . , h(n)}.
Task: Make sense of why the above works by trying to apply it on the
example I gave.

15 / 26



Some building blocks first!

Suppose we have defined h(0), h(1), . . . , h(n) already, and we want to
define h(n + 1). For n ∈ N, Let

Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}.

Task: Why is Sn a computable set for any n ∈ N?

16 / 26



Some building blocks first!

Suppose we have defined h(0), h(1), . . . , h(n) already, and we want to
define h(n + 1). For n ∈ N, Let

Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}.

Task: Why is Sn a computable set for any n ∈ N?
Answer: Sn is finite for any n, and finite sets are always computable
(according to professor Chungus).

17 / 26



Some building blocks first!

Suppose we have defined h(0), h(1), . . . , h(n) already, and we want to
define h(n + 1). For n ∈ N, Let

Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}.

Task: Why is the following function g : N× N→ N computable? (Give a
Turing machine argument)

g(n, k) =
{

0 f (k) /∈ Sn

1 f (k) ∈ Sn

18 / 26



Some building blocks first!

Suppose we have defined h(0), h(1), . . . , h(n) already, and we want to
define h(n + 1). For n ∈ N, Let

Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}.

Task: Why is the following function g : N× N→ N computable? (Give a
Turing machine argument)

g(n, k) =
{

0 f (k) /∈ Sn

1 f (k) ∈ Sn

Answer: Just check if f (k) = f (0) or f (k) = f (1) or f (k) = f (2), until
f (k) = f (n).

19 / 26



I hope you remember how to pronounce this Greek
letter!

Task: Pronounce the following Greek letter: µ

Task: What does µy [g(x , y) = 0] represent? (I’ve forgotten too, dw)

20 / 26



I hope you remember how to pronounce this Greek
letter!
Task: Pronounce the following Greek letter: µ
Answer: µ

(i only remember µ’s from love live school idol project lol)
(and no, i don’t really like this anime)

Task: What does µy [g(x , y) = 0] represent? (I’ve forgotten too, dw)
Answer: µy [g(x , y) = 0] is the minimum y ∈ N such that g(x , y) = 0.
(This minimum might not exist! in which case this is left undefined)

21 / 26



I hope you remember how to pronounce this Greek
letter!

Recall:
Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}

g(n, k) =
{

0 f (k) /∈ Sn

1 f (k) ∈ Sn.

Task: (in words) What is µk[g(n, k) = 0]?

22 / 26



I hope you remember how to pronounce this Greek
letter!

Recall:
Sn = {h(m) : m ≤ n} = {h(0), h(1), . . . , h(n)}

g(n, k) =
{

0 f (k) /∈ Sn

1 f (k) ∈ Sn.

Task: (in words) What is µk[g(n, k) = 0]?
Answer: µk[g(n, k) = 0] is the first k ∈ N such that f (k) /∈ Sn.

But remember, we wanted to set h(n + 1) = f (k) where k is the first
integer with f (k) /∈ Sn! So we can let

h(n + 1) = f (µk[g(n, k) = 0]).

23 / 26



We can formalize this now.

We have:
h(0) = f (0)

h(n + 1) = f (µk[g(n, k) = 0]).

Recall: if f1 and f2 are partial recursive, and

F (x , 0) = f1(x)

F (x , s(n)) = f2(x , n,F (x , n))

then F is partial recursive.

24 / 26



We can formalize this now.

We have:
h(0) = f (0)

h(n + 1) = f (µk[g(n, k) = 0]).

So if we let f1(x) = f (0) (it maps to the constant f (0)), and
f2(x , n,F (x , n)) = f (µk[g(n, k) = 0]), then F defined by

F (x , 0) = f1(x) = f (0)

F (x , s(n)) = f2(x , n,F (x , n)) = f (µk[g(n, k) = 0])

then F is partial recursive.
One last thing: set h(n) = F (0, n) (and notice that F doesn’t actually use
x ! it’s absolutely useless.)

Task: Make sense of this.

25 / 26



yay we proved it! now what?

nothing. idk that’s the only question i had to cover this tut, so

here’s croissant sushi. bye!

26 / 26


