CSC363H5 Tutorial 3 I'm back!!! yay

Paul "sushi_enjoyer" Zhang

University of Chungi

January 27, 2021

Learning objectives this tutorial

By the end of this tutorial, you should...

- Be fully convinced that Turing computability is much easier to understand than G*del computability.
- ► Have a list of synonyms for "computable" and "partial computable".
- Have a complete, mathematically-rigorous proof of the very intuitive fact that you can label things with numbers.
- Convince yourself to never take MAT309. To scare you even more, here's a proof I wrote in that course (page 1/3):

<text><text><text><text><text><text><text>

Quiz 2 is administered in this tutorial.¹

Question 1 (1 point): Do you hate Turing machines?

Question 2 (1 point): Do you like partial recursive functions?

Question 3 (1 point): Have you finished Assignment 1?

¹no it isn't, but stay tuned!

Answer key

Question 1 (1 point): Do you hate Turing machines? **Answer**: yep, i hate Turing machines! ****

Question 2 (1 point): Do you like partial recursive functions? **Answer**: yes! they are so much better than Boring machines.

Question 3 (1 point): Have you finished Assignment 1? **Answer**: yes! i love doing csc363 homework *****

let's review some words!

Task: List all synonyms of *computable* you have encountered so far in this course.

Task: List all synonyms of *partial computable* you have encountered so far in this course.

let's review some words!

Task: List all synonyms of *computable* you have encountered so far in this course.

Answer: decidable, nice, not weird, won't take forever to decide whether something is in it or not

Task: List all synonyms of *partial computable* you have encountered so far in this course.

Answer: *listable, computably enumerable (c.e.), partial recursive, Diophantine, the reason why we are spending weeks on material you'll probably never see in a software job*

Note: primitive recursive is neither of those.

the reason why you're here today...

is to prove this one statement!

If $A \subseteq \mathbb{N}$ is an infinite computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f.

- professor helo_fish.jpg, probably, 2021

Oh wait, helo_fish.jpg is back! she is no longer sad and feeling quite flushed right now.

helo_fish_flushed.jpg

mmm... idk, happy early valentines day i guess? ;-; (btw, sowwy i couldn't hold tutorial last week!)

helo_fish_flushed.jpg wants to grant you one wish. Of course your wish is to know what an infinite computable set is! Say "helo_fish_flushed.jpg, what is an infinite computable set?"

helo_fish_flushed.jpg

bruh.

Okay, now helo_fish_flushed.jpg can go since she has granted your wish. Say goodbye to helo_fish_flushed.jpg!

Okay question time.

In fact, we only need partial computability:

If $A \subseteq \mathbb{N}$ is an infinite computable partial computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f.

Task: Prove this. (5 mins)

Okay question time.

In fact, we only need partial computability:

If $A \subseteq \mathbb{N}$ is an infinite computable partial computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f.

Task: Prove this. (5 mins)

I'll lead you through the proof instead, because again, Greek letters spook people.

Task: Read and understand the statement to keep in your head (1-2 min).

Okay question time.

Recall: if $A \subseteq \mathbb{N}$ is partial computable, then there exists a **computable** function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f. (but f might not be injective!)

In other words,

$$A = \{f(0), f(1), f(2), \ldots\}$$

(but there may be repeats in the above list, as f might not be injective!) Our task is to find an *injective* function $h : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{h(0), h(1), h(2), \ldots\}$$

(the above list can't have repeats!)

How do we remove repeats intuitively?

Say A is the set of odd numbers, and f was some weird function that wanted to enumerate all the odd numbers, but really likes the number 69.

$$A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}$$

Task: How would you make an injective function h that generates the same set, but without repeats? (Don't need you to be formal here, just describe what to do)

How do we remove repeats intuitively?

Task: How would you make an injective function h that generates the same set, but without repeats? (Don't need you to be formal here, just describe what to do)

Answer: Choose h(n) to be the nth² element that hasn't been listed yet.

 $A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}$

In this case, h(0) = 69, h(1) = 1, h(2) = 3, h(3) = 5, and so on.

Now we just have to formalize the definition of h.

²Technically A is a set and doesn't have an "*n*th element" since sets don't have an order. But we can order A like $f(0), f(1), \ldots$

How do we remove repeats intuitively?

$$A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}$$

In this case, h(0) = 69, h(1) = 1, h(2) = 3, h(3) = 5, and so on.

So to construct such an h, we have

$$h(0) = f(0)$$
$$h(n+1) = f(k)$$

where k is the minimal integer such that $f(k) \notin \{h(0), h(1), \ldots, h(n)\}$. **Task:** Make sense of why the above works by trying to apply it on the example I gave.

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define h(n + 1). For $n \in \mathbb{N}$, Let

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}.$$

Task: Why is S_n a computable set for any $n \in \mathbb{N}$?

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define h(n + 1). For $n \in \mathbb{N}$, Let

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}$$

Task: Why is S_n a computable set for any $n \in \mathbb{N}$? **Answer:** S_n is finite for any n, and finite sets are always computable (according to professor Chungus).

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define h(n + 1). For $n \in \mathbb{N}$, Let

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}$$

Task: Why is the following function $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ computable? (Give a Turing machine argument)

$$g(n,k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n \end{cases}$$

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define h(n + 1). For $n \in \mathbb{N}$, Let

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}.$$

Task: Why is the following function $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ computable? (Give a Turing machine argument)

$$g(n,k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n \end{cases}$$

Answer: Just check if f(k) = f(0) or f(k) = f(1) or f(k) = f(2), until f(k) = f(n).

Task: Pronounce the following Greek letter: μ

Task: What does $\mu y[g(\overline{x}, y) = 0]$ represent? (I've forgotten too, dw)

Task: Pronounce the following Greek letter: μ Answer: μ

(i only remember μ 's from love live school idol project lol) (and no, i don't really like this anime)

Task: What does $\mu y[g(\overline{x}, y) = 0]$ represent? (I've forgotten too, dw) **Answer:** $\mu y[g(\overline{x}, y) = 0]$ is the **minimum** $y \in \mathbb{N}$ such that $g(\overline{x}, y) = 0$. (This minimum might not exist! in which case this is left undefined)

Recall:

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}$$
$$g(n, k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n. \end{cases}$$

Task: (in words) What is $\mu k[g(n, k) = 0]$?

Recall:

$$S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}$$
$$g(n, k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n. \end{cases}$$

Task: (in words) What is $\mu k[g(n, k) = 0]$? **Answer:** $\mu k[g(n, k) = 0]$ is the first $k \in \mathbb{N}$ such that $f(k) \notin S_n$.

But remember, we wanted to set h(n + 1) = f(k) where k is the first integer with $f(k) \notin S_n!$ So we can let

$$h(n+1) = f(\mu k[g(n,k) = 0]).$$

We can formalize this now.

We have:

$$h(0) = f(0)$$

 $h(n+1) = f(\mu k[g(n,k) = 0]).$

Recall: if f_1 and f_2 are partial recursive, and

$$F(x,0) = f_1(x)$$

$$F(x, s(n)) = f_2(x, n, F(x, n))$$

then F is partial recursive.

We can formalize this now.

We have:

$$h(0) = f(0)$$

 $h(n+1) = f(\mu k[g(n,k) = 0]).$

So if we let $f_1(x) = f(0)$ (it maps to the constant f(0)), and $f_2(x, n, F(x, n)) = f(\mu k[g(n, k) = 0])$, then F defined by

$$F(x, 0) = f_1(x) = F(0)$$
$$F(x, s(n)) = f_2(x, n, F(x, n)) = f(\mu k[g(n, k) = 0])$$

 $\Gamma(\alpha)$

then F is partial recursive.

One last thing: set h(n) = F(0, n) (and notice that F doesn't actually use x! it's absolutely useless.)

Task: Make sense of this.

yay we proved it! now what?

nothing. idk that's the only question i had to cover this tut, so 🚇 here's croissant sushi. bye! 🏾 📽 🍞 🕐

