CSC363H5 Tutorial 3

I'm back!!! yay

Paul "sushi_enjoyer" Zhang

University of Chungi

January 27, 2021

Learning objectives this tutorial

By the end of this tutorial, you should...

- \triangleright Be fully convinced that Turing computability is much easier to understand than G*del computability.
- \blacktriangleright Have a list of synonyms for "computable" and "partial computable".
- \blacktriangleright Have a complete, mathematically-rigorous proof of the very intuitive fact that you can label things with numbers.
- \triangleright Convince yourself to never take MAT309. To scare you even more, here's a proof I wrote in that course (page $1/3$):

3. Let $\mathcal{L} = \{0,1,\cdots,\mathcal{L},M\}$ where R is a binary relation crafted, and let $M = 0$

Find a sentence γ_i ("gamma") to that for our structure $\mathcal{M} = (M_1, \ldots)$ where the symbols Find a sentence γ_i ('gamma') so that for any structure $\mathcal{M}=\{M_1,...,M_r\}$ where the sy of $\mathcal{L}=\{R\}$ are interpreted in the usual way (i.e. + as addition, ste), we have that \mathcal{M}^{\pm} γ if and only if \mathbb{R}^{d} is the graph of a differentiable function $\mathbb{R}\rightarrow\mathbb{R}.$ gent, but find a sentence γ_d where the above is all the same, except we replace VMS To chall drive the seatment mobilización en contrato, a contra No \mathcal{M} is graph if and only if $\mathbb{R}^{|\mathcal{S}|}$ is the graph of a function. It is best to seemer that \mathbb{R}^N is already a gasple to pure the sect of the definition We shall define a lot of outcomess and shorthands: $x\neq y$ will be absorthand for \bullet We call the following formula $|x-y|<\delta$ as a cluster
and abdound : $1/2 - 0.01 + -4 = 0$ We show this indeed expresses $|x-y|<\delta,$ in the usual sense. Sup $\label{eq:2} \begin{array}{l} \text{if $f_1, g_2 \in \mathcal{F}$, and there exists a point of the g-is a point, and then g-is a point of the addition inverse of g. We have $x \mapsto g \leq h$ and $x \mapsto g \in \mathcal{F}$, so that $x \mapsto g \in \mathcal{F}$, which is $x \mapsto g \in \mathcal{F}$, then $x \mapsto g \in \$ aversing this argument). We shall from one on take the Death of Islaming and Africa. shall, boss new so, take the fiberty of intering may additive income
 ν with $-\mu$ and may multiplication inverse of y with $y^{-1},$ using the halones in defining also[e.g.f]. Also $x+\nu y$ will be weltten $x+\nu$ \bullet We call the following formula $\delta>0$ as a shorthand positive)(;)) \leq δ \wedge 0 \neq β . It is clear that \mathcal{M} is positive
(d) if and only if $\mathcal{S} > 0$

Quiz 2 is administered in this tutorial.¹

Question 1 (1 point): Do you hate Turing machines?

Question 2 (1 point): Do you like partial recursive functions?

Question 3 (1 point): Have you finished Assignment 1?

¹no it isn't, but stay tuned!

Answer key

Question 1 (1 point): Do you hate Turing machines? Answer: yep, i hate Turing machines!

Question 2 (1 point): Do you like partial recursive functions? **Answer**: yes! they are so much better than Boring machines.

Question 3 (1 point): Have you finished Assignment 1? **Answer**: yes! i love doing csc363 homework

let's review some words!

Task: List all synonyms of computable you have encountered so far in this course.

Task: List all synonyms of partial computable you have encountered so far in this course.

let's review some words!

Task: List all synonyms of computable you have encountered so far in this course.

Answer: decidable, nice, not weird, won't take forever to decide whether something is in it or not

Task: List all synonyms of partial computable you have encountered so far in this course.

Answer: listable, computably enumerable (c.e.), partial recursive, Diophantine, the reason why we are spending weeks on material you'll probably never see in a software job

Note: primitive recursive is neither of those.

the reason why you're here today...

is to prove this one statement!

If $A \subseteq \mathbb{N}$ is an infinite computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f .

- professor helo fish.jpg, probably, 2021

Oh wait, helo fish.jpg is back! she is no longer sad and feeling quite flushed right now.

helo fish flushed.jpg

mmm... idk, happy early valentines day i guess? ;-; (btw, sowwy i couldn't hold tutorial last week!)

helo_fish_flushed.jpg wants to grant you one wish. Of course your wish is to know what an infinite computable set is! Say "helo_fish_flushed.jpg, what is an infinite computable set?"

helo fish flushed.jpg

bruh.

Okay, now helo_fish_flushed.jpg can go since she has granted your wish. Say goodbye to helo_fish_flushed.jpg!

Okay question time.

In fact, we only need partial computability:

If $A \subseteq \mathbb{N}$ is an infinite computable partial computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f.

Task: Prove this. (5 mins)

Okay question time.

In fact, we only need partial computability:

If $A \subseteq \mathbb{N}$ is an infinite computable partial computable set, then there exists an injective computable function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f.

Task: Prove this. (5 mins)

I'll lead you through the proof instead, because again, Greek letters spook people.

Task: Read and understand the statement to keep in your head (1-2 min).

Okay question time.

Recall: if $A \subseteq \mathbb{N}$ is partial computable, then there exists a **computable** function $f : \mathbb{N} \to \mathbb{N}$ such that A is the range of f. (but f might not be injective!)

In other words,

$$
A=\{f(0),f(1),f(2),\ldots\}
$$

(but there may be repeats in the above list, as f might not be injective!) Our task is to find an *injective* function $h : \mathbb{N} \to \mathbb{N}$ such that

$$
A = \{h(0), h(1), h(2), \ldots\}
$$

(the above list can't have repeats!)

How do we remove repeats intuitively?

Say A is the set of odd numbers, and f was some weird function that wanted to enumerate all the odd numbers, but really likes the number 69.

$$
A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}
$$

Task: How would you make an injective function h that generates the same set, but without repeats? (Don't need you to be formal here, just describe what to do)

$$
\sqrt{7}
$$

How do we remove repeats intuitively?

Task: How would you make an injective function h that generates the same set, but without repeats? (Don't need you to be formal here, just describe what to do)

Answer: Choose $h(n)$ to be the $n\text{th}^2$ element that hasn't been listed yet.

 $A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}$

In this case, $h(0) = 69$, $h(1) = 1$, $h(2) = 3$, $h(3) = 5$, and so on.

Now we just have to formalize the definition of h.

²Technically A is a set and doesn't have an "nth element" since sets don't have an order. But we can order A like $f(0), f(1), \ldots$

How do we remove repeats intuitively?

$$
A = \{69, 1, 69, 3, 69, 5, 69, 7, \ldots\} = \{f(0), f(1), f(2), f(3), \ldots\}
$$

In this case, $h(0) = 69$, $h(1) = 1$, $h(2) = 3$, $h(3) = 5$, and so on.

So to construct such an h , we have

$$
h(0) = f(0)
$$

$$
h(n+1) = f(k),
$$

where k is the minimal integer such that $f(k) \notin \{h(0), h(1), \ldots, h(n)\}.$ **Task:** Make sense of why the above works by trying to apply it on the example I gave.

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define $h(n + 1)$. For $n \in \mathbb{N}$, Let

$$
S_n = \{h(m) : m \leq n\} = \{h(0), h(1), \ldots, h(n)\}.
$$

Task: Why is S_n a computable set for any $n \in \mathbb{N}$?

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define $h(n + 1)$. For $n \in \mathbb{N}$, Let

$$
S_n = \{h(m) : m \leq n\} = \{h(0), h(1), \ldots, h(n)\}.
$$

Task: Why is S_n a computable set for any $n \in \mathbb{N}$? **Answer:** S_n is finite for any n , and finite sets are always computable (according to professor Chungus).

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define $h(n + 1)$. For $n \in \mathbb{N}$, Let

$$
S_n = \{h(m) : m \leq n\} = \{h(0), h(1), \ldots, h(n)\}.
$$

Task: Why is the following function $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ computable? (Give a Turing machine argument)

$$
g(n,k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n \end{cases}
$$

Suppose we have defined $h(0), h(1), \ldots, h(n)$ already, and we want to define $h(n + 1)$. For $n \in \mathbb{N}$, Let

$$
S_n = \{h(m) : m \leq n\} = \{h(0), h(1), \ldots, h(n)\}.
$$

Task: Why is the following function $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ computable? (Give a Turing machine argument)

$$
g(n,k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n \end{cases}
$$

Answer: Just check if $f(k) = f(0)$ or $f(k) = f(1)$ or $f(k) = f(2)$, until $f(k) = f(n)$.

Task: Pronounce the following Greek letter: *µ*

Task: What does $\mu y[g(\overline{x}, y) = 0]$ represent? (I've forgotten too, dw)

$$
\begin{matrix} \begin{matrix} 1 \\ 2 \end{matrix} \\ 3 \end{matrix}
$$

Task: Pronounce the following Greek letter: *µ* **Answer:** *µ*

(i only remember *µ*'s from love live school idol project lol) (and no, i don't really like this anime)

Task: What does $\mu y[g(\overline{x}, y) = 0]$ represent? (I've forgotten too, dw) **Answer:** $\mu y[g(\overline{x}, y) = 0]$ is the **minimum** $y \in \mathbb{N}$ such that $g(\overline{x}, y) = 0$. (This minimum might not exist! in which case this is left undefined)

Recall:

$$
S_n = \{h(m) : m \le n\} = \{h(0), h(1), \ldots, h(n)\}
$$

$$
g(n, k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n. \end{cases}
$$

Task: (in words) What is $\mu k[g(n, k) = 0]$?

Recall:

$$
S_n = \{h(m) : m \le n\} = \{h(0), h(1), \dots, h(n)\}
$$

$$
g(n, k) = \begin{cases} 0 & f(k) \notin S_n \\ 1 & f(k) \in S_n. \end{cases}
$$

Task: (in words) What is $\mu k[g(n, k) = 0]$? **Answer:** $\mu k[g(n, k) = 0]$ is the first $k \in \mathbb{N}$ such that $f(k) \notin S_n$.

But remember, we wanted to set $h(n + 1) = f(k)$ where k is the first integer with $f(k) \notin S_n!$ So we can let

$$
h(n+1)=f(\mu k[g(n,k)=0]).
$$

We can formalize this now.

We have:

$$
h(0) = f(0)
$$

$$
h(n+1) = f(\mu k[g(n,k) = 0]).
$$

Recall: if f_1 and f_2 are partial recursive, and

$$
F(x,0)=f_1(x)
$$

$$
F(x, s(n)) = f_2(x, n, F(x, n))
$$

then F is partial recursive.

We can formalize this now.

We have:

$$
h(0) = f(0)
$$

$$
h(n + 1) = f(\mu k[g(n, k) = 0]).
$$

So if we let $f_1(x) = f(0)$ (it maps to the constant $f(0)$), and $f_2(x, n, F(x, n)) = f(\mu k[g(n, k) = 0])$, then F defined by

$$
F(x, 0) = f_1(x) = f(0)
$$

$$
F(x, s(n)) = f_2(x, n, F(x, n)) = f(\mu k[g(n, k) = 0])
$$

then F is partial recursive.

One last thing: set $h(n) = F(0, n)$ (and notice that F doesn't actually use $x!$ it's absolutely useless.)

Task: Make sense of this.

yay we proved it! now what?

nothing. idk that's the only question i had to cover this tut, so \blacksquare here's croissant sushi. bye! ⁸

